The PM's Guide to an A

Learning Curve Problems

Microsoft Excel can be used for learning curve problems to determine how long it takes to produce items in bulk as well as determining cost per unit, the total cost of a production batch, suggested sale price per unit, and the break-even point of a manufacturing project.

Step 1: Set up Excel Spreadsheet

- Create a new spreadsheet and set aside a cell to enter your learning rate. In the picture to the right, this is cell B4.
- Create a numbered list of how many units you plan to produce. In this example, we will be producing 20 units, and we have listed 1 through 20 in cells C6:C25.
- Immediately to the right of this list will be our calculation of how long each unit takes to produce (cells D6:D25). It is up to the PM to enter the time for unit 1. For this example, the time will be entered in cell D6.

	A	В	С	D
1	Learning (Curve Prob	lem	
2				
3		Learning Rate	e	
4				
5				
6		n=	1	
7			2	
8			3	
9			4	
10			5	
11			6	
12			7	
13			8	
14			9	
15			10	
16			11	
17			12	
18			13	
19			14	
20			15	
21			16	
22			17	
23			18	
24			19	
25			20	
-	1		1	

Step 2: Enter Formulas

	A	В	C	D							
1	Learning Curve Problem										
2											
3		Learning Rate	e								
4											
5											
6		n=	1								
7			2	=\$B\$4^(LOG(C7,2))*\$D\$6							
8			3								

- The formula to calculate time in a learning curve is:
 - $V_x = K x^{\log_2 b}$
 - K is the number of hours to produce the first unit
 - Y is the number of hours to produce the xth unit
 - X is the unit number
 - B is the learning rate
- Therefore, starting with the time cell for unit 2, enter the formula:
 - o =\$B\$4^(LOG(C7,2))*\$D\$6
 - You may need to adjust the cell references for your spreadsheet. However, ensure that the references to the learning rate and the first unit's time are <u>absolute references</u>.
- Extend this formula all the way down to your last unit.
- Select a cell to calculate the total time to produce all items. Use the SUM function to add up all of the time calculations (in this example, =SUM(D6:D25)).

	A	B	C	D	
1	Learning (Curve Prob	lem		
2					
3		Learning Rate	e	Total Time to Produce	
4				=SUM(D6:D25)	
5					
6		n=	1		
7			2	0	
8			3	0	
9			4	0	
10			5	0	
11			6	0	
12			7	0	
13			8	0	
14			9	0	
15			10	0	
16			11	0	
17			12	0	
18			13	0	
19			14	0	
20			15	0	
21			16	0	
22			17	0	
23			18	0	
24			19	0	
25			20	0	
26					

Step 3: Enter Data and Determine the Learning Rate

- Typically, you will be given the time to produce the first unit, the number of units produced, and the total time to do so. For our example, 20 units were produced in 350 hours, and the first unit was produced in 40 hours.
- Enter the time to produce the first unit (40) into your spreadsheet (cell D6).
- Click on the Data tab and select What-If under Analysis, then Goal Seek.

3	Learning Rate		Total Time to Produce
4			40
5			
6	n=	1	40
7		2	0
8		3	0
Con	I Sook	4	0
GUa	I SEEK	5	0
		6	0
Set cell:	\$D\$4	7	0
		8	0
To value:	350	9	0
		10	0
By changing cel	II: \$B\$4 🏼 🏝	11	0
		12	0
		13	0
Cancel	OK	14	0
		15	0
21		16	0

- Instruct Goal Seek to set the total time to produce (D4) to the value provided in your problem (350), by changing the learning rate (B4). Click
- The learning rate will be entered into your spreadsheet. In this example, it is approximately 0.7474.

Step 4: Minimum Time Requirements

• No manufacturing job can keep increasing its efficiency forever, so if a minimum

time required to produce an item is specified, you will need to manually replace any calculations that fall below this threshold. For example, if our minimum time to produce a unit was 12 hours, then we would replace the times for units 18 through 20 with 12.

16	12.48418791
17	12.17034288
18	12
19	12
20	12

Advanced Problems: Calculating Cost of Production

- If a problem provides you with the cost of parts and labor, you can determine the cost of each unit as well as total cost.
- Select a cell to enter your cost of labor per hour (B9) and the cost of parts per unit (B12).
- Four new columns are added to our calculations: parts cost, labor cost, unit cost, and cumulative cost.
 - Parts cost is an absolute reference to the cost of parts per unit.
 - Labor cost is an absolute reference to the cost of labor per hour multiplied by how long the unit takes to produce.
 - Unit cost is the sum of the parts and labor costs.
 - Cumulative cost is the sum of the unit costs up to the current unit, which shows how much a production line has spent after producing a certain number of units.
- D G В C E F н 1 Learning Curve Problem 2 Learning Rate 3 Total Time to Produce 4 0.747438195183886 =SUM(D6:D25) 5 Unit Cost Cum Cost Parts Cost Labor Cost 6 n= 1 40 =\$B\$12 =\$B\$9*D6 =E6+F6 =G6 7 =\$B\$4^(LOG(C7,2))*\$D\$6 =\$B\$12 =\$B\$9*D7 =H6+G7 2 =E7+F7 =\$B\$9*D8 =\$B\$12 8 Labor \$/hr 3 =\$B\$4^(LOG(C8,2))*\$D\$6 =E8+F8 =H7+G8 9 4 =\$B\$4^(LOG(C9,2))*\$D\$6 =\$B\$12 =\$B\$9*D9 =E9+F9 =H8+G9 10 =\$B\$4^(LOG(C10,2))*\$D\$6 =\$B\$12 5 =\$B\$9*D10 =E10+F10 =H9+G10 11 Parts \$/unit 6 =\$B\$4^(LOG(C11,2))*\$D\$6 =\$B\$12 =\$B\$9*D11 =E11+F11 =H10+G11 12 7 =\$B\$4^(LOG(C12,2))*\$D\$6 =\$B\$12 =\$B\$9*D12 =E12+F12 =H11+G12
- The picture below is a suggested setup for your spreadsheet.

	B C D		E	E F		Н	
1	Learning Curv	е	Problem				
2							
3	Learning Rate		Total Time to Prod	uce			
4	0.747438195		351.1364224				
5				Parts Cost	Labor Cost	Unit Cost	Cum Cost
6	n=		40	100	1200	1300	1300
7			29.89752781	100	896.9258342	996.9258342	2296.925834
8	Labor \$/hr		25.21631159	100	756.4893478	856.4893478	3153.415182
9	30		22.34655422	100	670.3966267	770.3966267	3923.811809
10			20.34749258	100	610.4247773	710.4247773	4634.236586
11	Parts \$/unit		18.84763443	100	565.4290328	665.4290328	5299.665619
12	100		17.66611086	100	529.9833259	629.9833259	5929.648945
13			16.70266816	100	501.0800448	601.0800448	6530.728989
14			15.89655926	100,	476.8967777	576.8967777	7107.625767
15			15.20849313	100	456.2547938	556.2547938	7663.880561
16			14.61175368	100	438.3526104	538.3526104	8202.233171
17			14.08744186	100	422.6232558	522.6232558	8724.856427
18			13.62175179	100	408.6525538	508.6525538	9233.508981
19			13.20432602	100	396.1297806	496.1297806	9729.638761
20			12.82721782	100	384.8165347	484.8165347	10214.4553
21			12.48421214	100	374.5263643	474.5263643	10688.98166
22			12.17036702	100	365.1110106	465.1110106	11154.09267
23			12	100	360	460	11614.09267
24			12	100	360	460	12074.09267
25			12	100	360	460	12534.09267

- Enter the cost of labor per hour and the cost of parts per unit. In our example, we will use \$30/hour for laborers and \$100/unit for parts.
- You can now see how much each unit costs to produce as well as the cumulative cost at any stage in production. Our 20 unit batch will cost a total of \$12,534.09.

Advanced Problems: Determining Sale Price

- With the size and total cost of a batch known, we can determine a reasonable sale price per unit.
- Divide the cumulative cost of the batch (\$12,534.09) by the number of units produced (20). This gives you an average per-unit cost.
- Any good business will build a profit margin into their price, and your problem might provide you with this number. Multiply the per-unit cost by the profit margin. For example, if we want a 25% profit margin, we multiply our per-unit cost by 1.25.

	B	
1	Learning Curve	ą
2		
3	Learning Rate	
4	0.747438195	
5		
6	n=	
7		
8	Labor \$/hr	
9	30	
10		
11	Parts \$/unit	
12	100	
13		
14	Per-unit cost	
15	626.7046336	
16		
17	Profit margin	
18	1.25	
19		
20	Sale price/unit	
21	783.3807919	

Advanced Problems : Determining the Breakeven Point

• To determine the breakeven point, add another column to the spreadsheet for total income. This is simply the sale price per unit multiplied by the number of units produced so far. See the picture below for reference.

	B C D		E	F	G	H	I				
1	Learning Curve Problem										
2											
3	Learning Rate		Total Time to Produce								
4	0.747438195183886		=SUM(D6:D25)								
5				Parts Cost	Labor Cost	Unit Cost	Cum Cost	Total Income			
6	n=	1	40	=\$B\$12	=\$B\$9*D6	=E6+F6	=G6	=\$B\$21*C6			
7		2	=\$B\$4^(LOG(C7,2))*\$D\$6	=\$B\$12	=\$B\$9*D7	=E7+F7	=H6+G7	=\$B\$21*C7			
8	Labor \$/hr	3	=\$B\$4^(LOG(C8,2))*\$D\$6	=\$B\$12	=\$B\$9*D8	=E8+F8	=H7+G8	=\$B\$21*C8			
9	30	4	=\$B\$4^(LOG(C9,2))*\$D\$6	=\$B\$12	=\$B\$9*D9	=E9+F9	=H8+G9	=\$B\$21*C9			
10		5	=\$B\$4^(LOG(C10,2))*\$D\$6	=\$B\$12	=\$B\$9*D10	=E10+F10	=H9+G10	=\$B\$21*C10			
11	Parts \$/unit	6	=\$B\$4^(LOG(C11,2))*\$D\$6	=\$B\$12	=\$B\$9*D11	=E11+F11	=H10+G11	=\$B\$21*C11			
12	100	7	=\$B\$4^(LOG(C12,2))*\$D\$6	=\$B\$12	=\$B\$9*D12	=E12+F12	=H11+G12	=\$B\$21*C12			
13		8	=\$B\$4^(LOG(C13,2))*\$D\$6	=\$B\$12	=\$B\$9*D13	=E13+F13	=H12+G13	=\$B\$21*C13			
14	Per-unit cost	9	=\$B\$4^(LOG(C14,2))*\$D\$6	=\$B\$12	=\$B\$9*D14	=E14+F14	=H13+G14	=\$B\$21*C14			
15	=H25/20	10	=\$B\$4^(LOG(C15,2))*\$D\$6	=\$B\$12	=\$B\$9*D15	=E15+F15	=H14+G15	=\$B\$21*C15			
16		11	=\$B\$4^(LOG(C16,2))*\$D\$6	=\$B\$12	=\$B\$9*D16	=E16+F16	=H15+G16	=\$B\$21*C16			
17	Profit margin	12	=\$B\$4^(LOG(C17,2))*\$D\$6	=\$B\$12	=\$B\$9*D17	=E17+F17	=H16+G17	=\$B\$21*C17			
18	1.25	13	=\$B\$4^(LOG(C18,2))*\$D\$6	=\$B\$12	=\$B\$9*D18	=E18+F18	=H17+G18	=\$B\$21*C18			
19		14	=\$B\$4^(LOG(C19,2))*\$D\$6	=\$B\$12	=\$B\$9*D19	=E19+F19	=H18+G19	=\$B\$21*C19			
20	Sale price/unit	15	=\$B\$4^(LOG(C20,2))*\$D\$6	=\$B\$12	=\$B\$9*D20	=E20+F20	=H19+G20	=\$B\$21*C20			
21	=B15*B18	16	=\$B\$4^(LOG(C21,2))*\$D\$6	=\$B\$12	=\$B\$9*D21	=E21+F21	=H20+G21	=\$B\$21*C21			
22		17	=\$B\$4^(LOG(C22,2))*\$D\$6	=\$B\$12	=\$B\$9*D22	=E22+F22	=H21+G22	=\$B\$21*C22			
23		18	12	=\$B\$12	=\$B\$9*D23	=E23+F23	=H22+G23	=\$B\$21*C23			
24		19	12	=\$B\$12	=\$B\$9*D24	=E24+F24	=H23+G24	=\$B\$21*C24			
25		20	12	=\$B\$12	=\$B\$9*D25	=E25+F25	=H24+G25	=\$B\$21*C25			

• When the total income is equal to or exceeds the cumulative cost, the manufacturing job has reached a break-even point.

	В	С	D	E		F		G	Н	I	J
1	Learning Curve Problem										
2											
3	Learning Rate		Total Time to Produce								
4	0.747438195		351.1364224								
5				Parts Cost	La	bor Cost	U	nit Cost	Cum Cost	Total Income	
6	n=	1	40	\$ 100.00	\$	1,200.00	\$	1,300.00	\$ 1,300.00	\$ 783.38	
7		2	29.89752781	\$ 100.00	\$	896.93	\$	996.93	\$ 2,296.93	\$ 1,566.76	
8	Labor \$/hr	3	25.21631159	\$ 100.00	\$	756.49	\$	856.49	\$ 3,153.42	\$ 2,350.14	
9	30	- 4	22.34655422	\$ 100.00	\$	670.40	\$	770.40	\$ 3,923.81	\$ 3,133.52	
10		- 5	20.34749258	\$ 100.00	\$	610.42	\$	710.42	\$ 4,634.24	\$ 3,916.90	
11	Parts \$/unit	6	18.84763443	\$ 100.00	\$	565.43	\$	665.43	\$ 5,299.67	\$ 4,700.28	
12	100	7	17.66611086	\$ 100.00	\$	529.98	\$	629.98	\$ 5,929.65	\$ 5,483.67	
13		8	16.70266816	\$ 100.00	\$	501.08	\$	601.08	\$ 6,530.73	\$ 6,267.05	
14	Per-unit cost	9	15.89655926	\$ 100.00	\$	476.90	\$	576.90	\$ 7,107.63	\$ 7,050.43	
15	626.7046336	10	15.20849313	\$ 100.00	\$	456.25	\$	556.25	\$7,663.88	\$7,833.81	Breakeven
16		11	14.61175368	\$ 100.00	\$	438.35	\$	538.35	\$ 8,202.23	\$ 8,617.19	
17	Profit margin	12	14.08744186	\$ 100.00	\$	422.62	\$	522.62	\$ 8,724.86	\$ 9,400.57	
18	1.25	13	13.62175179	\$ 100.00	\$	408.65	\$	508.65	\$ 9,233.51	\$ 10,183.95	
19		14	13.20432602	\$ 100.00	\$	396.13	\$	496.13	\$ 9,729.64	\$ 10,967.33	
20	Sale price/unit	15	12.82721782	\$ 100.00	\$	384.82	\$	484.82	\$ 10,214.46	\$ 11,750.71	
21	783.3807919	16	12.48421214	\$ 100.00	\$	374.53	\$	474.53	\$ 10,688.98	\$ 12,534.09	
22		17	12.17036702	\$ 100.00	\$	365.11	\$	465.11	\$ 11,154.09	\$ 13,317.47	
23		18	12	\$ 100.00	\$	360.00	\$	460.00	\$ 11,614.09	\$ 14,100.85	
24		19	12	\$ 100.00	\$	360.00	\$	460.00	\$ 12,074.09	\$ 14,884.24	
25		20	12	\$ 100.00	\$	360.00	\$	460.00	\$ 12,534.09	\$ 15,667.62	